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Universal magnetic fluctuations with a field-induced length scale
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We calculate the probability density function for the order-parameter fluctuations in the low-temperature
phase of the two-dimensionalXY model of magnetism near the line of critical points. A finite correlation length
j, is introduced with a small magnetic fieldh, and an expression forj(h) is developed by treating nonlinear
contributions to the field energy using a Hartree approximation. We find analytically a series of universal
non-Gaussian distributions of the finite-size scaling formP(m,L,j);Lb/nPL(mLb/n,j/L) and present a func-
tion of the formP(x);$exp@x2exp(x)#%a(h) that gives the probability density functions to an excellent approxi-
mation. We proposea(h) as an indirect measure of the length scale of correlations in a wide range of complex
systems.
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I. INTRODUCTION

There has recently been considerable interest in the fl
tuations of a spatially averaged quantity in systems with c
relations over a macroscopic length scalej @1–8#. The most
accessible example from both an experimental and a the
ical point of view, is a critical system, where the divergen
of the correlation lengthj is interrupted by the system sizeL.
Here, the breakdown of Landau theory and the occurrenc
a nonanalytic fixed point for the free energy in a renorm
ization group flow, tells one that the fluctuations will not b
Gaussian. Even so, extending the scaling hypothesis to
clude the macroscopic scaleL, one can deduce that the pro
ability density function~PDF! for order-parameter fluctua
tions should have universal properties. Further, the PDF m
be a homogeneous function ofm, L, andj of the following
form: @9#

P~m,L,j!;Lb/nPL~mLb/n,j/L !. ~1!

Here, adopting the language of a magnetic phase transition
and b are the usual critical exponents relating to the div
gence of the correlation length and the singularity in
magnetizationm. The scaling hypothesis therefore predic
fluctuations of a universal form, independently of syste
size, for constant ratioj/L.

We study the low-temperature phase of the tw
dimensional~2D! XY model, defined by the Hamiltonian

H52J(
^ i , j &

cos~u i2u j !2h(
i

cos~u i !. ~2!

The exchange interaction and magnetic field are of strengJ
and h, and the angleu i gives the orientation of a classica
spin vector of unit length, confined to a plane. We define
magnetization for a single configuration

m5
1

N (
i 51,N

cos~u i2 ū !, ~3!
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whereū5tan21(( isinui /(icosui) is the instantaneous mag
netization direction.

This is perhaps the simplest nontrivial system in whi
one can study critical phenomena. At low temperature an
zero field, there is a line of critical points, separated from
high-temperature paramagnetic phase by the Koster
Thouless-Berezinskii phase transition. The physics of t
low-temperature phase is perfectly captured by a harmo
or spin-wave Hamiltonian. That is, one can, without loss
generality, develop the cosine interaction to order (u i2u j )

2

and neglect the periodicity ofu i . This Hamiltonian is diag-
onal in reciprocal space and can be solved straightforwar
As a result, all critical phenomena can be calculated mic
scopically from Gaussian integration, without the need
either the scaling hypothesis, or the renormalization gro
Along the line of critical points, the exponentsb andn are
not individually defined, but there ratio is and the system h
a single independent exponenth52b/n5T/2pJ.

We have previously been interested in the zero field,
strongly correlated regime where the divergence ofj is com-
pletely removed by the system sizeL, and PL becomes a
function of a single variablemLb/n @10#. We have found that
PL , when plotted as a function ofm5(m2^m&)/s, is a
universal function, not only of system size, but also of te
perature and therefore of the critical exponenth. Here,^m&
is the mean ands the standard deviation of the distribution
This rather surprising result gives weight to our conjectu
@3# that the critical fluctuations of systems in certain unive
sality classes are captured, at least qualitatively by the fl
tuations of the 2DXY model.

In this paper we generalize our previous results by int
ducing a second length into the problem with the aid o
magnetic field. The field breaks the symmetry moving t
system into an ordered magnetic state with finite correlat
length j. However, taking a van Hove type thermodynam
limit, with the ratioj/L constant, should lead to a family o
limit functions, all with divergent correlation length, varyin
in form from the anisotropic limit~see Fig. 1! to a Gaussian
function, as the ratioj/L falls to zero. In Sec. II, we develop
a starting Hamiltonian that satisfies the requirements of
©2001 The American Physical Society11-1
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scaling hypothesis, using a self-consistent Hartree appr
mation. In Sec. III we give theoretical results for the PDF
a finite field and compare our results with those from Mo
Carlo simulation. In Sec. IV we fit the curve with a gener
ized form of Gumbel’s first asymptote from extremal stat
tics.

II. HARTREE APPROXIMATION
AND THE HYPERSCALING RELATION

Expanding the field energy in small angles, in the sa
way as the exchange term and Fourier transforming give
convenient starting Hamiltonian

H5H01
J

2 (
qW Þ0

S gq1
h

JDfq
2 , ~4!

wherefq5Re@1/AN( iu i exp(2iqW•rWi)# is the real part of the
Fourier transformed spin variable.gq5422 cos(qx)
22 cos(qy) and the sum(qW Þ0 is over the Brillouin zone for a
square lattice with periodic boundaries, withqW taking on dis-
crete values qx5(2p/L)nx , qy5(2p/L)ny , nx ,ny

50,2, . . .AN. Here and throughout the paper, we have
the nearest-neighbor distance on the lattice equal to u
Expandinggq for small q we can write the Green’s functio
propagator

G~q!'
1

q21j22 , j5AJ/h; ~5!

the magnetic field indeed introduces a length scalej.
However, this naive starting point needs some devel

ment before proceeding with the calculation as, as it stan
does not satisfy the well-known hyperscaling relation. To
this, consider the following scaling argument@11#: at the
critical temperature but in a finite field, the thermally ave
aged magnetization can be expressed in terms of bothj and
h:

^m&;j2b/n;S h

JD 1/d

, ~6!

FIG. 1. @j(0)/j(T)#2, as given by the Hartree approximation
for, from bottom to top,h/J50.01,0.05, and 0.5@Eqs.~9! and~10!#
as a function ofT/J.
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whered is the usual critical exponent for the response in
finite field. Putting expression~5! for j in Eq. ~6! leads to a
relation between the exponentsd52n/b, in disagreement
with the hyperscaling relationd115dn/b, which should be
valid for the 2DXY model @12#. The error comes from the
development of the field term in small angles. Even at l
temperature, when the nearest-neighbor differencesu i2u j
are small, the deviations ofu i from the fixed field direction
are divergent in the thermodynamic limit. The developme
of the field term in small angles is therefore invalid. Th
problem can be dealt with in the low-temperature phase
the absence of vortices, using the Hartree approximation
troduced by Pokrovsky and Uimin@13#. Expanding cos(ui) in
powers ofu i

2 , we make a mean-field decoupling

u i
2p→Cp^u i

2p22&u i
2 , ~7!

whereCp5(2p)!/2(2p22)! is a binomial counting factor.
As the underlying Hamiltonian~4! is quadratic, we can re
duce^u i

2p22& using Wick’s theorem, and after some resum
mation we eventually find

cosu i'12^m&
u i

2

2
. ~8!

The field term in the Hamiltonian~4! then becomes

h(
i

cos~u i !5Nh2
1

2
he f f~T! (

qW Þ0

fq
2 , ~9!

he f f~T!5^m&h.

Using the scaling relation̂m&;(h/J)1/d, the effective field
he f f→h(d11)/d and the scaling argument, correctly yields t
hyperscaling scaling relationship defined above. Note, h
ever, that the scaling argument is valid in the thermodyna
limit, where j/L!1 and the influence of the finite syste
size is negligible. In the crossover region that interests
with j/L;O(1) one cannot make this substitution, and
general one must explicitly work with expression~9!.

The point of principle that poses the problem for the h
perscaling relation is that making the substitution cos(ui)'1
2(1/2)u i

2 results in an order-parameter conjugate to the fie
^m&5^12(1/2)u i

2&512T/8pJ log(N) which diverges with
system size, for any finite temperature. In order for the
perscaling relation to hold,̂m& must be a correctly defined
intensive variable. For this to be so, the higher-order term
the expansion of cosui must be retained, at least within th
level of the approximation shown here. The calculation
Berezinskii@11# is consistent with this thermodynamic arg
ment.

Still, in the absence of vortices, an effective coupling co
stantJe f f can be calculated in a similar manner. In zero fie
we did not need to account for this, asPL for a quadratic
Hamiltonian is independent of temperature throughout
low-temperature regime. However, as the correlation len
depends on both the field and the coupling constant, we n
have to calculate it if we are to have good agreement w
numerical data. Expanding cos(ui2uj) in powers of the dis-
1-2
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UNIVERSAL MAGNETIC FLUCTUATIONS WITH A . . . PHYSICAL REVIEW E64 036111
crete difference operator¹W u i @11# and again using the decou
pling ~7! for (¹W u i)

2p, we arrive at a self-consistent expre
sion for Je f f(T) @13,14#:

Je f f5J expS 2
T

4Je f f
D . ~10!

The Green’s function we finally use for the calculation of t
PDF is therefore of the form~5! but with the correlation
length given in terms of the self-consistent effective field a
coupling constant

j5AJe f f

he f f
. ~11!

The variation ofj with temperature, for a fixed field is quit
small throughout the range of fields that interests us. In F
1 we show@j(0)/j(T)#2 as a function of temperature fo
three different field strengths. Even forh/J50.5, there is
only a 10% variation, up to a temperatureT/J50.7, above
which the Hartree approximation breaks down. As sho
below, the temperature dependence of the resulting distr
tion function is even weaker than that forj/L, and for prac-
tical purposes it can be considered as temperature inde
dent. The parametershe f f and j/L can be found in Table I
for a system of sizeL532 at temperatureT/J50.7 and for
field strength betweenh50.001 andh50.5. For a finite field
the ratioj/L varies fromj/L50.99 toj/L50.043.

III. THE PROBABILITY DENSITY FUNCTION
IN A FINITE FIELD

We have previously developed@10,15# the following ex-
pression for the PDF:

PL~m!5E
2`

` dx

2p
eixmw~x!, ~12!

ln w~x!52 ixA 1

2g2
(
qÞ0

G~q!

N

2
1

2 (
qÞ0

lnF12 iA 2

g2

G~q!

N
xG ,

TABLE I. Variation of he f f , j/L, a, andg with field h for L
532 andT/J50.4.

h he f f j/L a g

0.0 0.0 ` 1.5807 20.89
0.001 0.001 0.987 1.611 20.88
0.005 0.005 0.4407 1.7416 20.844
0.01 0.0101 0.3111 1.903 20.801
0.05 0.0512 0.1381 3.359 20.583
0.1 0.1034 0.098 5.333 20.463
0.5 0.523 0.0429 21.82 20.23
03611
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where gk51/Nk(qWG(q)k and m5(m2^m&)/s. The PDF
with a finite correlation length is calculated from the sam
expression by inserting the modified Green’s function~5!.
The equivalence of Eqs.~1! and~12! is a result of the hyper-
scaling relation@10# and the functional dependence predict
by the scaling hypothesis~1! comes directly from dimen-
sional analysis of Eq.~12!. We note that the calculation ca
easily be extended to explore the non-Gaussian but nonc
cal behavior in all dimensions less than 4@10#. Summing
over the Brillouin zone for a large but finite system a
performing a numerical Fourier transforms we generate
data shown in Figs. 2 and 3. Data is shown in Fig. 2
h/J50.05 (j/L50.138 atT/J50.4) and in Fig. 3 forh/J
50.01, 0.05, and 0.5 corresponding toj/L50.311, 0.138,
and 0.043 atT/J50.4. It is compared with results from
Monte Carlo simulation for a system of sizeL532. In each
case, theoretical and numerical data are shown for three
peratures:T/J50.1, 0.4, and 0.7. As in the zero-field cas
which can be considered as the extreme non-Gaussian
for such a system, the PDF’s are characterized by an ex
nential tail for fluctuations below the mean and a dou
exponential above the mean@10#. Applying the field reduces
the asymmetry and in a large field the data approac
Gaussian distribution.

Agreement between the theoretical calculation and
Monte Carlo simulation is generally extremely good, indic
ing that the Hartree approximations are accurate. In Fig. 2
sets of data collapse, within numerical error, onto a sin
curve independently of temperature. This is the case for
field values chosen. When plotted on a logarithmic sca
temperature dependence is still not observable, but a di
ence between theoretical and numerical values can be
served along the exponential tail, for probability densit
smaller than 1024. The discrepancy appears largest for fiel
aroundh/J;0.05. This must indicate the limit of the abilit
of the Hartree approximation in dealing with the fluctuation
For a very small field, its effect is small and so errors a
negligible, while for larger fields, critical fluctuations ar
smaller and one can imagine that the Hartree approxima
becomes quantitatively very accurate. Only in the interme
ate field range ofh/J;0.05, the combination of these tw

FIG. 2. Monte Carlo data forPL(m) for magnetic fieldh/J
50.05 and forT/J50.1,0.4 and 0.7, using the Hamiltonian~2!. The
lines are for data generated from Eq.~12! ~dotted! and for the func-
tion ~15! ~dashed!.
1-3
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effects is sufficient to give the small deviation from th
Monte Carlo data.

In all cases, both numerical and theoretical, the indep
dence of the results on temperature is quite remarkable a
leads one to suggest that, as in the case of a zero field
distribution is truly temperature independent throughout
range of temperature and system size for which the exc
tion of vortex pairs can be neglected. This point requi
further study, but it is already clear that, from a pragma
point of view, temperature dependence is not an observ
phenomena.

FIG. 3. Monte Carlo data forPL(m) for magnetic field~a! h/J
50.01, ~b! h/J50.05, and~c! h/J50.5 for T/J50.1,0.4, and 0.7.
The lines are for data generated from Eq.~12! ~full ! and for the
function~15! ~dashed!. Theoretical curves for different temperatur
are superposed.
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Note that with the definition~3! we explicitly study the
longitudinal magnetization, irrespective of its direction
space. This is the quantity that becomes critical at a ph
transition in a system with continuous symmetry. The int
duction of the magnetic field breaks the orientational sy
metry in the thermodynamic limit and the variable conjuga
to it is the projection ofmW along the field direction. The
fluctuations in these two quantities are different for a sm
field and in the crossover region, ash→0, the latter quantity
becomes ill defined@16#. The two quantities become indis
tinguishable forj/L;0.1.

The skewnessg5^m3&, which parametrizes the asymme
try of the curve, varies from20.89 in the extreme non
Gaussian limit to20.23 for a ratioj/L50.043, and indeed
goes smoothly to zero forj/L→0. Numerical values can
also be found in Table I.

The origin of the skewness becomes clear if one consid
the contribution made by the normal modes. The magnet
tion can be written

m5121/2N(
q.0

fq
21•••. ~13!

To leading order infq , m therefore consists of a sum ove
variables mq5(fq

2/2N) which, within the spin-wave ap-
proximation, are statistically independent, with generat
function

P~mq!5AbJq2N

4p
mq

21/2e2bJe f fN(q21j22)mq. ~14!

In zero field, the mean amplitudes^mq& vary from a micro-
scopic valueO(1/N) for modes on the zone edge through
a value ofO(1) for the long-wavelength modes at the zo
center and the dispersion in the contributions is divergen
the thermodynamic limit. In two dimensions the density-o
states is linear inq, which is just what is required to engag
the entire zone@10#.

Violation of the central limit theorem therefore arises b
cause the individual elements, although statistically indep
dent, are not individually negligible. The modes of diverge
amplitude near the Brillouin-zone center are responsible
the anisotropy, although all parts of the zone are required
a detailed reconstruction ofP(m). Introduction of the length
scalej removes the divergence forq→0 and reestablishe
the criterion that the statistically independent elements
individually negligible. In the limit thatj/L→0 the distribu-
tion becomes Gaussian. If the thermodynamic limit is tak
while keeping the ratioj/L constant, the amplitudes remain
divergent, but the contribution from the zone center becom
progressively less, as the ratioj/L is reduced and the skew
ness falls to zero.

IV. FITTING WITH A GENERALIZED GUMBEL
FUNCTION

In Refs.@10,15# we have compared the functional form o
PL(m) with a series of standard expressions. Although no
are exact solutions, they all give good fits to the data a
1-4
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therefore offer very useful analytical functions as well
giving some insight into the physical processes respons
for the asymmetric PDF. Here, we only pursue one of the
the generalized Gumbel function for the statistics of e
tremes@17#

szPG~mz!5w exp@ab~mz2s!2aeb(mz2s)#, ~15!

which gives theath largest or smallest values of a set ofN
random numberszi , in the limit thatN→`. For the smallest
values,mz5(z2^z&)/sz . The constantsw, b, ands depend
on a through the three conditions of normalization,^mz&
50 and^mz

2&51 and one finds

w5
aaaa

G~a!
sz ,

b5A 1

G~a!

]2G~a!

]a2 2F 1

G~a!

]G~a!

]a G2

, ~16!

s5
1

b F log~a!2
1

G~a!

]G~a!

]a G .
The function therefore has only one parameter, which is
culated by comparing the Fourier transform of Eq.~15! with
F(x) of Eq. ~12!. Using the notation of Eq.~12! we have, for
the Gumbel function,

ln wG~x!5 ln
wG~a!

saa
2 ixS s1

C~a!

b
2

ln~a!

b D2
x2

2b2
C8~a!

1 i
x3

6b3
C9~a!1

x4

24b4
C-~a!2 i

x5

120b5
C (4)~a!

1•••, ~17!

whereC(z) is the digamma functionG8(z)/G(z). For F we
have

ln w~x!52
1

2
x22 i

A2g3

3g2
3/2

x31
g4

2g2
2

x41 i
2A2g5

5g2
5/2

x51•••,

~18!

from which it follows that the constanta is implicitly given
by

C9~a!

C8~a!3/25223/2
g3

3/2

g2
. ~19!

For the zero field, the solution isa'p/2, rather than an
integer value, showingP(m) is not simply an extreme valu
distribution. This solution is an approximation although
good one, which can be seen by comparing the ratio
higher-order terms in the two expansions~17! and ~18!.
These diverge slowly from unity@10#. Solving Eq.~19! for a
finite field, givesa increasing withh. The subsequent curve
are superimposed in Figs. 2 and 3, where one can see tha
fitting function reproduces the results of the theoretical c
culation to a good approximation. For a small field a ve
03611
le
e,
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small difference in the slopes of the exponential tails can
detected. However, this disappears with increasingh and the
fitting function can be regarded as an excellent working t
for describing the data. In Fig. 4 we illustrate the evoluti
of the distribution from the anisotropic limit to the uncorr
lated Gaussian limit as a function of field using Eq.~15!. The
values ofa(h) are shown in Table I. In terms of extrema
statistics, the evolution ofa(h) means that we are describin
the PDF of less and less extreme values, which beco
more and more normal.

For a strong field, one can solve Eq.~19! analytically.
Evaluatingg2 andg3 using a continuum approximation an
using Stirling’s formula, lnG(a)'a ln a2a, one finds

a;
p

2 F11S L

2pj D 2G . ~20!

This simple expression givesa to a good approximation eve
outside the range ofa values for which Sterling’s formula is
valid, and reproduces our previous result forh50. It also
allows one to see thata has a contribution coming from
fluctuations within a correlated domain and a contributi
coming from the fact that the system, with finitej, can be
divided into a numberNe f f5(L/j)2 of statistically indepen-
dent domains.

V. CONCLUSION

In conclusion, we have made a microscopic calculation
the generalized scaling functionPL(mLb/n,j/L) for order-
parameter fluctuations near the line of critical points of t
low-temperature phase of the 2DXY model. A Hartree ap-
proximation is used to treat the nonlinear corrections to
quadratic Hamiltonian. The approximation is necessary
ensure that the hyperscaling relation between critical ex
nents is satisfied. We show that the hyperscaling relation
consequence of the nonlinearity necessary to ensure the
rect system size dependence of the order parameter, co
gate to the applied magnetic field. This is a requiremen
thermodynamics, rather than a general requirement for
observation of non-Gaussian fluctuations for global qua
ties. Indeed, observation of hyperscaling in nonthermo

FIG. 4. Evolution ofPL(m) from the function~15! with h/J.
Moving from left to right for fluctuations below the mean, the da
is for h/J50, 0.01, 0.05, 0.1, 0.5, and̀.
1-5
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namic systems@18#, could be taken as an indication that a
equivalent phenomenology exists. For a fixed magnetic fi
the correlation length is modified only slightly by therm
fluctuations and this manifests itself in the functionPL ,
which is essentially independent of temperature. The
that the exponentb/n54pT/J is small and thatd58pT/J
21 is large, may be important for this observation. Mo
work is required to clarify this point.

Finally, we propose that our fitting parametera(h) could
be used as an experimental tool to estimate the correla
length scale in other correlated systems. We have previo
made an empirical observation@3,15# that the fluctuation of
global measures in other correlated systems, both in equ
rium and out of equilibrium, are very similar to those of th
magnetization of the two-dimensional~2D! XY model in a
zero field. We have proposed that these observations i
re

rin

g
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trate, at least qualitatively, universal features for correla
systems from different universality classes. This idea, as w
as alternative interpretations@8,19#, could be tested for ex-
ample, in an enclosed turbulent flow using the experimen
setup described in Refs.@1,5#, by varying the ratio of the
power injection length scale to the enclosure length scal
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